Test Equipment Solutions Datasheet

Test Equipment Solutions Ltd specialise in the second user sale, rental and distribution of quality test & measurement (T&M) equipment. We stock all major equipment types such as spectrum analyzers, signal generators, oscilloscopes, power meters, logic analysers etc from all the major suppliers such as Agilent, Tektronix, Anritsu and Rohde & Schwarz.

We are focused at the professional end of the marketplace, primarily working with customers for whom high performance, quality and service are key, whilst realising the cost savings that second user equipment offers. As such, we fully test & refurbish equipment in our in-house, traceable Lab. Items are supplied with manuals, accessories and typically a full no-quibble 2 year warranty. Our staff have extensive backgrounds in T&M, totalling over 150 years of combined experience, which enables us to deliver industry-leading service and support. We endeavour to be customer focused in every way right down to the detail, such as offering free delivery on sales, covering the cost of warranty returns BOTH ways (plus supplying a loan unit, if available) and supplying a free business tool with every order.

As well as the headline benefit of cost saving, second user offers shorter lead times, higher reliability and multivendor solutions. Rental, of course, is ideal for shorter term needs and offers fast delivery, flexibility, try-before-you-buy, zero capital expenditure, lower risk and off balance sheet accounting. Both second user and rental improve the key business measure of Return On Capital Employed.

We are based near Heathrow Airport in the UK from where we supply test equipment worldwide. Our facility incorporates Sales, Support, Admin, Logistics and our own in-house Lab.

All products supplied by Test Equipment Solutions include:

- No-quibble parts & labour warranty (we provide transport for UK mainland addresses).
- Free loan equipment during warranty repair, if available.
- Full electrical, mechanical and safety refurbishment in our in-house Lab.
- Certificate of Conformance (calibration available on request).
- Manuals and accessories required for normal operation.
- Free insured delivery to your UK mainland address (sales).
- Support from our team of seasoned Test & Measurement engineers.
- ISO9001 quality assurance.

Test equipment Solutions Ltd Unit 8 Elder Way Waterside Drive Langley Berkshire SL3 6EP

T: +44 (0)1753 596000 F: +44 (0)1753 596001

Email: info@TestEquipmentHQ.com Web: www.TestEquipmentHQ.com

PM 6680B / PM 6681 / PM 6681R

Technical Data

Timer / Counter / Analyzers **Rubidium Frequency Reference / Counter / Calibrator**

PM 6681: the highest performance timer/counter/ analyzer available

The PM 6681 from Fluke sets the new standard for measurement and analysis of time intervals, frequency, phase and jitter. For development, calibration or challenging production test applications, the PM 6681 is the leader.

Check these key PM 6681 performance parameters, and compare the new state-of-the-art for yourself:

- 50 ps single-shot time interval resolution (1 ps averaged)
- 1.25 mV vertical resolution
- 300 MHz range, options to 4.2 GHz
- 8k readings/s to internal memory
- 250 readings/s over GPIB
- Continuous single-period measurements at up to 40k readings/s
- Unique hold-off and arming delay facilities to measure any part of any complex signal
- TimeView[™] PC software for time and frequency analysis

So for the ultimate performance, choose the advanced PM 6681.

PM 6680B: the value leader

For applications that don't demand the PM 6681's sheer performance, check into Fluke's PM 6680B. This model offers a combination of performance and price that makes it today's undisputed value leader. Key specs. are identical to the PM 6681, except for:

- resolution
- 100 ps averaged time interval resolution
- 225 MHz range, options to 4.2 GHz
- 2k readings/s to internal memory

So, for today's top timer/counter value, choose the economic PM 6680B.

PM 6681R: ideal for calibration applications

The Rubidium reference of the PM 6681R makes this instrument the most accurate Frequency Reference/Counter/Calibrator for the calibration of frequency, time or phase.

- 250 ps single-shot time interval High accuracy and short warmup times: 5 min. to lock
 - $4x10^{-10}$ within >10 min. Aging 1x10⁻⁹ in 10 year
 - Calibrates Frequency, Time or Phase
 - Calibrates any application specific frequency
 - 5x 10MHz & 1x 5MHz buffered reference outputs

Measuring Functions

Refer to table 1 for uncertainty information. Inputs A and B can be swapped internally in all modes except Rise and Fall Time.

Frequency A, B, C

Range:

10⁻¹⁰ Hz to 300 MHz 10⁻¹⁰ Hz to 225 MHz Input A (PM 6681): Input A (PM 6680B): 10⁻¹⁰ Hz to 100 MHz Input B:

Input C: Up to 1.3 GHz, 2.7 GHz or 4.2 GHz

with options

Resolution (PM 6681): 11 digits in 1s measuring time Resolution (PM 6680B): 10 digits in 1s measuring time

Frequency Burst A. B. C

Frequency and PRF of burst signals can be measured without external control signal and with selectable start arming delay.

Input A (PM 6681): Up to 300 MHz Input A (PM 6680B): Up to 160 MHz Input B: Up to 100 MHz

Input C (PM 6681): Up to 3 GHz with options

Start Delay Range

(PM 6681) 200 ns to 1s, 100 ns resolution

Period A

Range (PM 6681): 3.3 ns to 10¹⁰s Range(PM 6680B): 6 ns to 10¹⁰s

Resolution (PM 6681): 11 digits in 1s measuring time Resolution (PM 6680B): 10 digits in 1s measuring time

Ratio A/B, C/B

Range: 10⁻⁹ to 10¹

Frequency Range: 10⁻¹⁰ Hz to 160 MHz Input A, B:

Input C: Up to 1.3 GHz, 2.7 GHz or 4.2 GHz

with options

Time Interval A to B

0 ns to 10 s Range: Resolution

single shot (PM 6681): 50 ps (1 ps average)

PM 6680B): 250 ps Up to 160 MHz Frequency Range:

Pulse Width A

3 ns to 10¹⁰s Range: Frequency Range: Up to 160 MHz

Rise and Fall Time A

3 ns to 10¹⁰s Range: Frequency Range: Up to 160 MHz Input Amplitude (PM 6681): >250 mV p-pInput Amplitude (PM 6680B): >500 mV p-p

Phase A Relative B

Range: -180° to +360° Resolution: 0.01

Frequency Range: 0.03 Hz to 160 MHz

Duty Factor A

Range:

Frequency Range: 0.11 Hz to 160 MHz

Totalize A, B

0 to 10¹⁷, 0 to 10¹⁰ in A-B modes Range:

Frequency Range: 0 to 160 MHz

A Gated by B: Event counting on Input A during the

presence of a pulse on Input B. Single or cumulative event counting during set

measuring time

Event counting on Input A between two A Start/Stop by B:

consecutive pulses on Input B

Manual A-B: Input A minus Input B event counting

with manual start and stop Manual/Timed A-B:

Input A minus Input B event counting with manual start. Stop after set measuring time. Time counted from first

trigger event on A.

AC/DC Voltage A, B

-50V to +50V Range: Frequency Range (PM 6681): DC, 1 Hz to 100 MHz Frequency Range (PM 6680B): DC, 100 Hz to 100 MHz V $_{\rm max}$, V $_{\rm min}$, V $_{\rm p-p}$ 1.25 mV Mode:

Resolution (PM 6681): Resolution (PM 6680B): 20 mV

Gated Volt: External masking of unwanted signal

components such as overshoot

Input and Output Specifications Inputs A and B (PM 6681)

Frequency Range: DC-Coupled:

Channel Inputs:

Pulse Width:

DC to 300 MHz AC-Coupled: 10 Hz to 300 MHz Coupling: AC or DC Impedance: $1~\text{M}\Omega/15~\text{pF}$ or 50Ω (VSWR 2:1)

1 M Ω /65 pF or 50 Ω with PM 9611/80 rear panel inputs Trigger Slope:

Positive or negative Separate, common A or

swapped Max. channel timing difference: 500 ps Sensitivity:

20 mV rms, <100 MHz

30 mV rms, 100 MHz to 200 MHz 40 mV ms, 200 MHz to 250 MHz 60 mV rms, >250 MHz

>5 ns at 60 mV p-p, >3 ns at 90 mV p-p x1 or x10

Attenuation: Hysteresis Window (x1): 20 mV p-p Variable Hysteresis A (x1):

30 mV p-p to 10V p-p up to 120 MHz 60 mV p-p to 10V p-p within

±5V window Read-Out on display (x1): -5V to +5V

Variable Hysteresis A
Dynamic Range (x1):
Trigger Leve (x10): -50V to +50V Resolution (x1): 1.25 mV Uncertainty (x1): \pm (4 mV + 1% of trigger level)

Trigger level is automatically set to 50% point of input signal (10% and 90% for Rise/Fall Time, 75% and 25% for variable hysteresis A)

>1 Hz Frequency:

Low Pass Filter A: 100 kHz fixed. >40 dB attenuation at 1 MHz

Digital Low Pass Filter: 1 Hz to 10 MHz using trigger Hold-Off Trigger Indicator: Tri-state LED-indicator

Max Voltage Without Damage: $1 \text{ M}\Omega$:

Trigger Slope:

Channel Inputs:

AUTO Trigger Level:

350V (DC + AC pk) at DC to 440 Hz, falling to 12V rms (x1) and 120V rms

(x10) at 1 MHz

12V ms

Inputs A and B (PM 6680B)

50Ω:

Frequency Range: DC-Coupled: DC to 225 MHz AC-Coupled: 10 Hz to 225 MHz AC or DC

Coupling: Approx. 1.5 ns Rise Time Impedance:

 $1 \text{ M}\Omega/30 \text{ pF or } 50\Omega \text{ (VSWR 2:1)}$ $1 \text{ M}\Omega/80 \text{ pF or } 50\Omega \text{ (with }$

PM 9611/80 rear panel inputs)

Positive or negative Separate, common A or swapped

Max. channel timing difference: 1 ns Sensitivity:

20 mV rms, <100 MHz 30 mV rms, 100 MHz to 200 MHz

2

40 mV rms, >200 MHz >5 ns at 60 mV p-p, Pulse Width: >3 ns at 90 mV p-p

Attenuation: x1 or x10 Hysteresis Window (x1): 30 mV p-p

Variable Hysteresis A (x1): 60 mV p-p to 10V p-p up to 120 MHz

Dynamic Range (x1): 60 mV p-p to 10V p-p within ±5V window

Trigger Level: Read-Out on display (x1): -5.1V to +5.1V Range: Range (cont'd): (x10): -51V to +51V

Resolution (x1): 20 mV

Uncertainty (x1): \pm (20 mV + 1% of trigger level) AUTO Trigger Level: Trigger level is automatically set to 50% point of input signal (10% and 90% for Rise/Fall Time.

75% and 25% for variable hysteresis A)

Frequency: >100 Hz Amplitude: >150 mV p-p

100 kHz fixed. >40 dB atten. at 1 MHz Low Pass Filter A: Digital Low Pass Filter: 1 Hz to 5 MHz using trigger Hold-Off

Trigger Indicator: Tri-state LED-indicator Max Voltage Without

Damage: $1 \text{ M}\Omega$: 350V (DC + AC pk) at DC to 440 Hz, falling to 12V rms (x1) and 120V rms (x10) at 1 MHz

500: 12V rms

Input C (Option PM 9621)

70 MHz to 1.3 GHz Frequency Range: 256 (PM 6680B) Prescale Factor: 512 (PM 6681)

Operating Input Voltage

Range:

70 to 900 MHz: 10 mV rms to 12V rms 15 mV rms to 12V rms 0.9 to 1.1 GHz: 1.1 to 1.3 GHz: 40 mV rms to 12V rms Amplitude Modulation:

DC to 0.1 MHz: Up to 94% depth Up to 85% depth 0.1 to 6 MHz:

Minimum signal must exceed minimum operating input voltage

Impedance: 50Ω nominal, AC coupled,

VSWR <2:1

Max Voltage Without

12V rms, pin-diode protected Damage:

Connector:

Input C (Option PM 9624)

100 MHz to 2.7 GHz Frequency Range: 16 (PM 6680B) Prescale Factor: 32 (PM 6681)

Operating Input Voltage

Range:

100 to 300 MHz: 20 mV rms to 12V rms 0.3 to 2.5 GHz: 10 mV rms to 12V rms 2.5 to 2.7 GHz: 20 mV rms to 12V rms

Amplitude Modulation As PM9621

Impedance: 50Ω nominal, AC coupled,

VSWR <2.5:1

Max Voltage Without

12V rms, pin-diode protected Damage:

Connector: Type N Female

Input C (Option PM 9625B)

150 MHz to 4.2 GHz Frequency Range: 32 (PM 6680B) Prescale Factor: 64 (PM 6681)

Operating Input Voltage Range:

150 to 300 MHz: 20 mV rms to 1V rms (-21 to +13 dB) 0.3 to 2.2 GHz: 10 mV rms to 1V rms (-27 to +13 dB) 15 mV rms to 1V rms (-23.5 to +13 dB) 2.2 to 3.5 GHz: 3.5 to 4.2 GHz: 25 mV rms to 1V rms (-19 to +13 dB)

Amplitude Modulation As PM 9621

 50Ω nominal, AC coupled, Impedance:

VSWR <2.5:1

Max Voltage Without Damage: 12V rms, pin-diode protected Connector: Type N Female

Rear Panel Inputs and Outputs

Reference Input (PM 6681): 1, 2, 5, or 10 MHz > 200 mV rms signal Reference Input (PM 6680): 10 MHz >500 mV rms signal Reference Output (PM 6680B): 1x 10 MHz > 0.5V rms sinewave into

500 load

DC to 100 MHz

PM 6681R: 5x 10 MHz & 1x 5 MHz. >0.5V rms

sinewave into 50Ω load

Arming Input: Most measuring functions can be

performed.

Frequency Range (PM 6681):

Frequency Range

(PM 6680B): DC to 50 MHz

Slew Rate: >2 V/s

Trigger Level: TTL level, 1.4V nominal Trigger Slope: Positive or negative

Gate Output: Gate open/gate closed signal output Outputs for channel A and B trigger Trigger Level Outputs:

Outputs for channel A and B to adjust Probe Compensation Outputs:

for best pulse response when using

probes for counter input 0 to 4.98V proportional to 3 selected digits

Auxiliary Functions

Trigger Hold-Off

Analog output:

Time Delay Range (PM 6681): Time Delay Range (PM 6680B): 60 ns to 1.34s, 10 ns resolution 200 ns to 1.6s, 100 ns resolution Event Delay Range B (PM 6681): 2 to 2^{24} -1, max. 100 MHz Event Delay Range B (PM 6680B):2 to 2^{24} -1, max. 20 MHz

External Arming

Sample Size (PM 6681):

Sample Size (PM 6680B):

Time Delay Range B, E: 200 ng to 1.6s, 100 ns resolution

Event Delay Range B: 2 to 2²⁴-1, max. 20 MHz

Statistics

Functions: Maximum, Minimum, Mean

and Standard Deviation 1 to 2 x 10 samples 1 to 65535 samples

Mathematics

(K*X+L)/M and (K/X+L)/M. X is cur Functions:

rent reading and K, L and M are con stants; set via keyboard or as frozen ref erence value (X_o) or as value from pre

ceding measurement (X_{n-1})

Other Functions

Measuring Time (PM 6681): Single cycle, 80, 160, 320, 640,

1280 ns and 20 us to 20s (or to 400s for some functions) Single cycle, 0.8, 1.6, 3.2, 6.4,

Measuring Time (PM 6680B): 12.8 µs and 50 µs to 20s (or to

400s for some functions)

Freezes measuring result, until a new Display Hold: measurement is initiated via Restart

20 instrument setups can be saved and recalled from internal non-volatile

memory. 10 can be user protected. Gives access to additional functions

Auxiliary Menu: Display: 10-digit LCD with high-luminance

backlight

GPIB Interface

Settings:

Programmable Functions: All front panel accessible

functions

Compatibility: IEEE 488.2-1987, SCPI

Interface Functions: SH1, AH1, T6, L4, SR1, RL1,

3

DC1, DT1, E2

Time Stamping (PM 6681): 125 ns resolution

PM 6680B Measurement Rate* PM 6681 Via GPIB 250 readings/s 125 readings/s To Internal Memory: 8k readings/s 2k readings/s

Internal Memory Size (PM 6681)* Up to 6100 readings Internal Memory Size (PM 6680B)*Up to 2600 readings Data Output: ASCII, IEEE double precision

floating point

TimeView™ Time & Frequency Analysis Software

TimeView runs on an IBM PC/AT or compatible with VGA monitor.

Data Capture Modes and Measurement Rate*

PM 6681 **PM 6680B** Free Running Measurement: 8k readings/s 2k readings/s Repetitive Sampling: Up to 10 MHz Up to 10 MHz

Continuous Single-Period: Up to 40k readings/s (200 ns resolution)

Waveform Capture: Yes N/A

Data Analysis Features: Measurement data vs time

FFT Graph

Root Allan Variance Smoothing function Zoom function Cursor measurements N/A

Distribution Histogram Setup and Measurement Data Archive and printing

* Depending on measurement function and internal data format

Systematic Uncertainties

Trigger Level Timing Error

Time Interval, Rise/Fall Time, Pulse Width, Duty Factor (x1): Trigger Level Timing Error =

= TLU x $(1/\tilde{S}x + 1/Sy) \pm 0.5$ x Hyst. x (1/Sx + 1/Sy)

Where:

Sx = Slew rate at start trigger point in V/s Sy = Slew rate at stop trigger point in V/s TLU = Trigger Level Uncertainty for each

model in Volt

Hyst. = Hysteresis Window for each model in Volt Hyst. = 0 for Time Interval and Rise/Fall Time for PM 6681

Phase, sinewave signals and trigger levels OV (x1): Trigger Level Timing Error (PM 6681) = = [0.2/V pk of A + 0.2/V pk of B]

Trigger Level Timing Error (PM 6680B) =

 $= [0.3/V \text{ pk (A)} + 0.3/V \text{ pk (B)}] ^{\circ} \pm [0.9/V \text{ pk (A)} - 0.9/V \text{ pk}]$

V pk (A) = Input A peak voltage in Volt V pk (B) = Input B peak voltage in Volt

Measurement Uncertainties

Measuring Function	nRandom Uncertainty rms	Systematic Uncertainty		
	OEN'T	E.C.		
Time Interval	$\sqrt{(QE)^2 + (Start Trigger Error)^2 + (Stop Trigger Error)^2}$	\pm Trigger Level Timing Error		
Pulse Width	VN Light way	\pm 500 ps Systematic Error (PM 6681)		
Rise/Fall Time	or min.: 1 ps for PM 6681, 100 ps for PM 6680B	\pm 1 ns Systematic Error (PM 6680B)		
	at ogo	\pm Time Base Error x Time Interval		
Frequency	V(QE) ² + 2 x (Start Trigger Error) ² x Frequency or Period	\pm Time Base Error x Freq. or Period		
Period	Measuring Time	$\pm \frac{\text{QE x Freq. or Period}}{\text{Measuring Time}}$		
Ratio f ₁ /f ₂	$\sqrt{\text{(Prescaler Factor)}^2+2x (f_1 \times \text{Start Trigger Error of } f_2)^2}$			
	f ₂ x Measuring Time			
Phase	$\sqrt{(QE)^2 + (Start Trigger Error)^2 + (Stop Trigger Error)^2} \times Freq. \times 360^\circ$	± Trigger Level Timing Error°		
	√N x 11eq. x 500	\pm 500 ps Sys. Error x Freq. x 360° (PM 6681)		
	or min.: (1 ps for PM 6681, 100 ps for PM 6680B) x Freq. x 360°	\pm 1 ns Sys. Error x Freq. x 360° (PM 6680B)		
Duty Factor	$\sqrt{(QE)^2+(Start\ Trigger\ Error)^2+(Stop\ Trigger\ Error)^2}} \times Frequency$	\pm Trigger Level Timing Error x Freq.		
	\sqrt{N}	\pm 500 ps Sys. Error x Freq. (PM 6681)		
	or min.: (1 ps for PM 6681, 100 ps for PM 6680B) x Frequency	\pm 1 ns Syst. Error x Freq. (PM 6680B)		

Table 1: Measurement Uncertainties

Random Uncertainties

(QE) Quantization Error

(PM 6681): 10°C to 40°C: 50 ps rms

0 to 10°C and 40 to 50°C:

75 ps rms

(QE) Quantization Error (PM 6680B): (N)Number of samples

(PM 6681):

0°C to 55°C:

250 ps rms

Frequency <12 kHz: Measuring Time x Frequency/2

Frequency >12 kHz: Measuring Time x

(N) Number of samples

(PM 6680B):

Frequency <2 kHz: Measuring Time x

Frequency/2

Frequency > 2 kHz: Measuring Time x

1000

Start/Stop Trigger Errors:

 $\sqrt{(Vnoise-input)^2+(Vnoise-signal)^2}$

rms Signal slew rate (V/s) at trigger point

Vnoise-input (PM 6681): 100µV rms typical 200µV rms typical Vnoise-input (PM 6680B):

Vnoise-signal: The rms noise of the input signal

Display Resolution

LSD Displayed

Unit value of the least significant digit displayed. All calculated LSDs should be rounded to the nearest decade (e.g. 0.3 Hz is rounded to 0.1 Hz, 5 Hz is rounded to 10 Hz.) and cannot exceed the 12th digit.

Frequency and Period

LSD Displayed (PM 6681) 50 ps x Frequency or Period measuring time

LSD Displayed (PM 6680B) 500 ps x Frequency or Period

measuring time

Time Interval, RT, FT, PW

LSD Displayed (PM 6681)

LSD Displayed (PM 6680B)

500 ps \sqrt{N}

Duty Factor

LSD Displayed

1 x 10⁻⁶

Phase

LSD Displayed

0.01°

Ratio f1/f2

LSD Displayed

Prescaler Factor . f2 x measuring time

Time Base Options

Option model:		PM668-/-1-	PM668-/-5-	PM668-/-6-	PM668-/-7-
Retro-fittable option:		non retrofit.	PM9691/011	PM9692/011	non retro-fit.
Time base type:		Standard	OCXO	OCXO	Rubidium
Uncertainty due to:					
Calibration adjustment tolerance, at $+ 23^{\circ}C \pm 3^{\circ}C$		<1x10 ⁻⁶	<2x10 ⁻⁸	<5x10 ⁻⁹	$<5x10^{-11}$
Ageing:	per 24 hr.	n.a.	<5x10 ⁻¹⁰	<3x10 ⁻¹⁰ ①	n.a.
	per month	$<5 \times 10^{-7}$	<1x10 ⁻⁸	$<3x10^{-9}$	<5x10 ⁻¹¹ 2
	per year	<5x10 ⁻⁶	<7.5x10 ⁻⁸	<2x10 ⁻⁸	<2x10 ⁻¹⁰ 3
Temperature variation:	0°C-50°C,	<1x10 ⁻⁵	<5x10 ⁻⁹	<2.5x10 ⁻¹⁹	<3x10 ⁻¹⁰
	20°C-26°C (typ. values)	<3x10 ⁻⁶	<6x10 ⁻¹⁰	$<4x10^{-10}$	<5x10 ⁻¹¹
Power voltage variation: ± 10%		<1x10 ⁻⁸	<5x10 ⁻¹⁰	<5x10 ⁻¹⁰	<1x10 ⁻¹⁰
Short term stability:	$\tau = 1 \text{ s}$		<5x10 ⁻¹²	$<5x10^{-12}$	<5x10 ⁻¹¹
(root Allan Variance)	$\tau = 10 \text{ s}$	not specified	<5x10 ⁻¹²	<5x10 ⁻¹²	$<1.5 \times 10^{-11}$
	$\tau = 100 \text{ s}$		n.a.	n.a.	<5x10 ⁻¹²
Power-on stability:				-ell	A.K.
Deviation versus final value after 24hr on time,		n.a.	<1x10 ⁻⁸	<5x10 ⁻⁹	$<4x10^{-10}$
after a warm-up time of:		30 min	10 min	10 min	10 min
Total uncertainty, for operating temperature				Ex My	
0° C to 50° C, at 2σ (95%) confidence interval:			9	~	
1 year after calibration		<1.2x10 ⁻⁵	<1x10 ⁻⁷	<2.5x10 ⁻⁸	<7x10 ⁻¹⁰
2 years after calibration		$<1.5 \times 10^{-5}$	<2x10 ⁻⁷	<5x10 ⁻⁸	$<9x10^{-10}$
Typical total uncertainty, for operating temperature					
20°C to 26°C, at 2σ (95%) confidence interval:			and ment		
1 year after calibration		<7x10 ⁻⁶	<1x10 ⁻⁷	<2.5x10 ⁻⁸	<6x10 ⁻¹⁰
2 years after calibration		<1.2x10 ⁻⁵	$<2x10^{-7}$	<5x10 ⁻⁸	<8x10 ⁻¹⁰
		(2)	Silv		

n.a.

Not discernible, neglectable versus 1° C temperature variation. \bullet After 48 hours of continuous operation, PM9692 typical value 1×10^{-10} / 24h

After 1 month of continuous operation
 Typical value. Aging during 10 year <1x10°

Calibration Adjustment Tolerance is the maximal tolerated deviation from the true 10MHz frequency after a calibration. When the reference frequency does not exceed the tolerance limits at the moment of calibration, an adjustment is not needed. Total uncertainty is the total possible deviation from the true 10MHz value under influence of frequency drift due to ageing and ambient temperature variations versus the reference temperature. The operating temperature range and the calibration interval are part of this

General Specifications

Environmental Data

Operating Temp 0°C to +50°C StorageTemp: -40°C to +70°C

3G at 55 Hz per MIL-T-28800D Vibration: Shock: Half-sine 40G per MIL-T-28800D.

Bench handling. Shipping container. MTBF 30 000 h (calculated)

Reliability: IEC 1010 Class 1, CSA 22.2 No. Safety:

231, EN 61010-1, CE

EN 55011 ISM Group 1, Class B; EMC:

EN 50082-2; FCC Part 15J Class A, CE

Power Requirements

90V rms to 265V rms, 45 Hz to 440 Hz,

35W (PM 6680B - 6681)

100 W during warm-up (5 min.), 47 W during normal operation

(PM 6681R)

Dimensions and Weight

 Width:
 315 mm (12.4 in),

 Height:
 86 mm (3.4 in),

 Depth:
 395 mm (15.6 in)

Weight PM 6680B,

PM 6681: Net 4 kg (8.5 lb),

Shipping 7 kg (15 lb) Weight PM 6681R: Net 4.8 kg (10.5 lb).

Shipping 7.8 kg (16.8 lb)

Ordering Basic Models

PM 6680B/016 225 MHz, 250 ps Timer Counter

including Standard Time Base GPIB-interface and Time & Frequency Software TimeView

PM 6681/016 300 MHz, 50 ps Timer/Counter including Standard Time Base,

External Reference Frequency Multiplier (1, 2 or 5 MHz), GPIB-interface and Time & Frequency Software, TimeView

Rubidium Reference Basic Model

PM 6681R/076 300 MHz Frequency Reference/

Counter/Calibrator including
GPIB-interface and Time &
Frequency Software, TimeView

Included with Instrument

One year product warranty, line cord, operator manual, and Certificate of Calibration Practices

Input Frequency Options (PM 6680B, PM 6681, PM 6681R)

 PM
 668 _ /4 _ _
 1.3 GHz Input C (PM 9621)

 PM
 668 _ /6 _ _
 2.7 GHz Input C (PM 9624)

 PM
 668 _ /8 _ _
 4.2 GHz Input C (PM 9625B)

Time Base Options (PM 6680B, PM 6681)

PM 668 / 5 Very High Stability Oven Time

Base (PM 9691)

PM 668 / 6 Ultra High Stability Oven Time Base

(PM 9692)

Example Ordering Configuration

To order the PM 6681 300 MHz, 50 ps version with the 2.7 GHz input C and Standard Time Base, select the complete Model Number: PM 6681/616

Options and Accessories

PM 9611/80 Rear Panel Inputs (front inputs disconnected)

PM 9621 1.3 GHz Input C PM 9624 2.7 GHz Input C PM 9625B 4.2 GHz Input C

PM 9691 Very High Stability Oven Time Base PM 9692 Ultra High Stability Oven Time Base

PM 9622/00 Rack-Mount Kit PM 9627 Carrying Case

PM 9627H Heavy Duty Alumium Carrying Case PM 9020/002 200 MHz 10:1 probe 1MΩ/30pF (for

PM6680B)

PM 9639 2.3 GHz 500Ω probe 10:1 (BNC)

When ordered together with the basic counter, options are factory

istalled.

Options ordered separately can be customer retrofitted, except

PM 9611/80 Rear Panel Inputs. SW Drivers on request

MET/CAL procedures are available

HPVEE driver is available

LabView driver is available from National Instruments (PM6681)

Manuals

Operator *
Programming*
Service

*No charge with purchase of unit

Factory Warranty

One year product warranty

Two year warranty on Rubidium Element